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1. CHARACTERISTIC DHEERENT IAL EQUATIONS -

INITIAL AND BOUNDARY CONDITIONS.

For setting up the characteristic differential equations one
stsrts from the differential equation for the velocity potential since
the velocity ccanpments can be expressed more stiply by the velocity
potential than ‘bythe stresm function. This Uf ferential equation
reads, according to 1(15) :

with

() U2
l-—

u_v

()

# “o
#&x-2a2%y+l-~~y = (1)

.

*“Ebene Potentislstrkungen. “ Techni.scheHochschtie Dresden,m Archi’vNr. 4-4/3, Kapitel 3X1, March 22, 1941.



2 NACA TM 1243

and the sonic velocity a determined by

()a2=,~-11-q2
2

in the selected.non-dhensionel representation.

The characteristic condition (cf.

()
1 -&+2%3j+

a

If one puts

chapter II(8), NACA TM 1242) is

u= qco6i3 v=qsino

the characteristic co~tion is written

(4)

(5)

(~2 ) ( )

.
- q2cos28 Y2 + 2q?ain$ COS19 ~ + a2 - q2sin20 k2 = O (6)

Hence result two roots h’ and A“ for ~, the slope of the charac-

teristic base curves toward the x-axis:

k“ =

As differential equation
base curves results

and for the second

~~sin~ cos ~ +aJq2 - a2
(7a)

q~coi2g - a2

q2sin 79cos d - a‘~

q?cos2il- a2

for the first fami~ of the characteristic

&y- A’dx=o

W -h’’ dx=o

(P)

(8a)

(8b)
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For explanation of these relations (smewhat clifficult to survey
due to the cmnplicated form of k * and k“) one uses an artifice which
is permissible in two-&Lmensionsl flows. Since in the two-dimensional.
flow, for instsnce, in contrast to the rotationsUy-synmetrtcsl flaw,
no direction is ~eferred, one may place the x-exls of a Cartesian xy
system in the direction of the flow at the location nnder investigation;
thus there heccmes

‘-8=0

“=@=
}

k“ = - ar)~2 - a2

The Mach angle a is defined by

(9)

so that

‘-’+ (lo)

~is signifies according to (8) that the characteristic base curves
form with the streamlines the Mach angle a. The first fsmily (8a) of
characteristic base curves forms the Mach angle tuward the left (looking
in the flow direction), the second family (8b) forms the same angle
toward the right. The first family of characteristic’base curves were

thereupo~ denoted as left-hand, the second as
ri@.t-hand Mach waves.

k
The second characteristic equation of the first

d q family of characteristics is, according to II(28b),
o! (NACA ~ 1242):

au +
q?sin.~ cos 0 - a q2 - a2

dv=o (ha)

q2SOS2* - a2
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end for the second f&mXbv of
(TMI@@) :

du +

NJICATM 1243

characteristics, according to II(29b)

,

iq2f3ind cos O + a q2 - a2
dv=O (llb)

q2coe2d - a2

with

du = COB ~ dq - q sin O d$
o (12)

dv =sin Odq+qcos Odtq

If one applies the same artifice as in seiecting the special coordinate
system at the considered.location, one ebtains, since o there beccmes
o,

du = dq, dv = q dti

and one has on the first family of characteristics

and on the second

“ri=qdo’o (13a)

‘q’tiqd’=o (13b)

The two relations (13) contain only quantities independent of the
specisl selection of a coordinate system. Together with the remark
made initially on the admissibility of the last used coordinate system
there results, accwdingly, the general validity of the relation (13a)
for the first, of the relation (13b) for the second femily of charac-
teristics. .

The relations (13) are often, in an elementary manner, deduced
frcm the fact that the infinitesimalvelocity vsriation is perpendicular
to the Mach wave: ●

✎
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()II
sin - ‘-u

2

(
sin a

)
~+a-dd

cos a

cos a + sin a do

1 -tan ad*

-q.tanad~.

a
a da

@=”-
Thus the velocity variation in crossing a left-hand Mach wave is
regulated accord5ng to this equation (cf. (13b)); the crossing has to
tske @ace slonq a right-hand Mach wave. Regsrding this elementary
derivation the fundamental remark has to be made that here tacitly the
existence of a relation between u and v alone (and between q
Snati alone, respectively) is assumed. ~ the rotationally-synm.etric~
case where this presupposition no longer holds, one obtains accordingly
another characteristic equation although the veloclty increment occurs
as before perpendicularly to the Mach wave.

A few remarks concerning the secondsxv conditions which supervene
the differential equation of the two-dimensional potentisl flow ere to
be inserted at this yoint.

The secon.deryconditions may for instance le givenby initial.
conditions, that is, on an initiel curve (fcr exsmple, in a certain
cross section of a channel) a few a sU flow values sre prescribed.
The front of a compression shock also my serve as initisl curve. The
initial distributions for the appmximationmethod discussed here are
approximated by distributions constant over smsll tistences. Therein
it was often used.as approximation principle that the @ups in O are
to be of a certain magnitude, for instance ~l” or ~2°. Correspondingly,
the boundery distributions which are given by boundary conditions, the
main tyyes of which wil.1now be discussed, &e also appraimated.
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$ is prescribed at a solid wall. If one denotes as compression
wave a Mach wave behind which a pressure increase and a velocity decrease “

tekes place, compression waves sre reflected at a solid wsll as ccmpres-
sio’nwaves. This can readily be seen in the fi~e.
The crossing of the right-hand Mach canpression wave
occurs slong a left-hand Mach wave; thus the pre-
supposed decrease of q according to (lsa) is
connected with a decrease of 0. The crossing of the adjoining left-
hand wave elong a right-hand wave must cause - due to the boundary
conditim at the wsll which is assumed to le unbroken - an increase
of O which according to (13b) produces a decrease of q, therefore a
compression.

At a free .Ietboundary the pressure p is prescribed as constant;
thus the velocity q &lso is a known constant there. The free jet
l)ollnderymust - because of the kinematic boundsry condition of vanishing
normal velocity - coincide tith a stream line which will be determined
in the course of the solution of th’eflow problem. A compression”wave
is reflected at a flreejet boundary as rarefaction wave since the drop
in velocity which occurred first must be made good again by an increase,
in order to satisfy the condition of constant velocity at the free jet
boundsry.

2. -@l!TION OF THE SECOND OHARAOTERISTIC

DIR3RENTIAL EQUATIONS.

Of the characteristic equations (8a), (8b), (13a), (l~b) the last
- pair can be very easily integrated; this was slready done by Th. Meyer

(cf. Th. Meyer, perticularlyp. 38). Following, a derivation is given
which fits into our general theory.

On the left-hand femily of characteristics

“l++
K

with a2 = +(1+. Hence 19 msy be determined as function

(134

of q by quadrature. The execution of this elementary integration
results in

.
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u

.

.

- arc tellG==+’z (14)
I

is the critical velocity
d

u
(K +,1)

end dz represents en integration

constant. It has to be noted that all velocltie~ have been made non-

T
t..

2tc”3?0
dimensional by Vm = ~ —

-lpo (Po t- Pressue, P. temk density).

For this relation a table of data particularly convenient for the
practical calculation has been given by O. Welchner for air (~ = 1.405)
(cf. pp. 22-23). Aside from the velocities q referred to the sonic
velocity a and the critical sonic velocity a*, the pressure p,
referred to the tank pressure p. is given, for which the equation

~= (1 +’/(’-1)
Po

is valid. In the last column the Mach an@e a is indicated. The
integration constant 19z is selected as O, v is used instead of ~
for this special integration constant; the reason for this will be
shown in the next paragraph. The application of the Meyer-Walchner
table for the approximated construction of two-cthuensionalpotential
flows will be discussed In the next paragraph.
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For the right-hand
integration of.(lsb)

characteristics one obtains corres~ondingly by

f —7 J
•1

or

with flr being an integration constant. On the left-hand character-
istics increasing q is, accorting to (lsa), connected with
increasing O, on the right-hand characteristics increasing q, accord-
ing to (13b), with decreashg ~. Hence the designation left-hand and
right-hsnd, at first introduced through the characteristic base curves
of the Mach waves, is immediately comprehensive also for consideration
of the ~’characteristichodogra~hs’*the equation of which is given in
polar coordinates (q radius vector, $ angular coordinate) in
differential fcmnby (13a) and (13b), in the integrated formby (14)
and (15). Cl. Thiessen (1926) first drew attention to an interesting
geometrical interpretation of these characteristicholographs. A
gemetricsl proof which, however, requires longer P.reysration,has
been given by A. $usemann. Following, we give our owm proof, relin-
quishing the nm-dbnensional representation, in order to conform to
custcmmy representation.

According b Thiessen the characteristichodograph curves are
epicycloid originating from the rolling of a circle of diameter Vm - a*
on a circle of radius a*.

.

.

.
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Since the rolling
point A, the point Q
the fixed.circle O -
increment dq lles on

9

circle rolls in the denoted yosition about the
- which baa the distance q frwthe center of

traces a small circulsr arc alout A. Thus the
the line Q3, since @ Is perpendicul.srto QA.

On the other hsnd, dq is, accorting to the end of the previous
paragraph, for two-dimensional potentiel fluws Unequivocally determined
by the fact that dq Is perpendicular to the Mach wave which with q
(here represented by OQ forms the Mach angle a = arc sin a/q. Thus
the proof will be given if the sngle & OQA is found to be equsl to

and

one has

the Mach angle.

If one puts prel~narlly

& Ow

4QB

4:

& QAo

According to the sine theorem applied to the triangles OQB and OQA
one obtains

()sln~+e
COB c=— = ‘% ,

sin ~ sin $ q

sin c sin G a*=— =.

()
sin~+~ Cos p q

Ihmthese two equations the sngle c which is of interest to us
may Ye calculated by elimination of P. This brief calculati.onmay be
performed about as follows. One has directly
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Hence follows by squxri~ and adding

or

~2

(

K+l—. siIl*G+ —
Vma 1 )

sin2~ = 1
tc- 1

Nexk, there results

This, huwever, is just the equation for the Mach angle; thus e equals
the E&oh angle. Therewith the fundamental statauent dealing with the
behaviar of dq with regard to the characteristicshas been obtained

.

ageh. The directional field produced by rolling of the circle coin-
cides, therefore, with the directional field of the character stic hodo-
graph curves. The characteristichodograph curves are epicycloid.

..

~. DIRIWP APPLULATION OF MEYER ‘S CHARMTERISTIC HODOGRAPH

TAELE F(2RCONSTRUCTION OF TWO-DIMENSIONAL

POrENrIAL FLOWS.

Meyer’s solution far the characteristic holographs indicated
in the pevious peragra~ has been used tirectly for the construction
of two-dimensional potential fluws by J. Ackeret and, recently, by
O. W~chner. We shell explain the method in one of the examples cal-
culated by O. Walchner which for the fhat time showed the general
validity of the method.

First it is to be noted that the one table given actually is
sufficient for all characteristic holographs, since, according to (14),
for the left-hand characteristic holographs

$=v+dz (16)
.

.
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according to (15) for the right-hand cheracteristic

+ d_

11

hodo~ephs

(17)~.

the crossing of
characteristic,

It has to be pointed out that
takes place fioruqa left-hand
The crossing of a left-hand Mach wave occurs-along a right-hand charac-
teristic with (17) being valid.

a right-hand Mach wave
so that (16) is valid. .

The transition from one fIeld with the index i to the next with
the index i + 1 is regulated at the crossina of a ri$zht-hand Mach
wave, thus according to the eq.uations:

%+1 = v~+~ +

whence folluws, with 02 eliminated:

Ivi+l “( )=‘i+ ‘i+l - ‘i
(18)

For crossing of a left-hand Mach wave
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must b valid or, after elimination of ~r:

According to the two equations (18) and (19) Meyer 1s table is used for
the approximated calculation of two-dimensional potential flows.

The selected ex~e of Welchner (fig. 3 of Walchner’s report Lufo
Bd. 14 (AviationResesrch, vol. 14) p. 55, 1937) deals with the flow
about a biylane at an angle of attack, with relatively rougl’approxi-
mation since large @Qps in direction fram one field to the next are
admitted. Furthermore compression shocks are approximated by Mach
waves which - in view of the weakness of the occurring shocks - is
still justified (cf. ‘chapterV, par. 5).

The field numbers me put as indices to the pertaining flow

Q PI
values. In the initial field — =1. a,

al
— = 0.221, 791= o is
P.

prescribed. According to the table the value ‘1 = 16° pertains to

this value of q/a ar p/po. In fleld2 ~2 = ‘10°, due to the

~eometrical boundary condition. Since in the transition flxm field 1
~o field 2 a

according to

Pi
— =0.363.
Po

right-kand Mach wave is crossed$ v2

the table, the pertinent vslues are

For field 3 one ha~, for geometrical

transition fra field 1 to field 2

~ . ~ 504, ~ .0270. The
with

a3 “ ‘o “
in the next field 4 rewesents the

= 6° according
fl~
— = 1.293,
%

reasons, 43 =

leads, accmding to

calculation of the

general case of the

(19), to

tO (18);

4°; the

V? = 12°

q- and O-values

method. I&am
f3.eld3 one arrives at-field 4 by the crossing of ari@t-hand Mach
wave, ~hus according to (18): ~ = V3 + ~ --03 = 80 ~ ~. l?rcm

field 2 one errives at field 4 by the crossing of a left-hand Mach wave,
thus accordingto (19): v4 =V2 -~4 - fi2)= ’40-$4. IYonthe two

equations for ti4 and V4 set up

~4 P4
with - =1.132, — = 0.449. In

a4 Po

$& nuw follows ‘4 = -60, V4 .20

.
ell ran@ning fields O is ~escribed

,
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by geometrical boundary conditions so that the calculation is easy and
takes place very similarly to that for field 2 and field 3. One has

‘5 =
40,

‘5 120, = 1.*,

.

0.270;

~6 ~6
fi6 = -10°, V6 = @ — = 1.293, — = 0.363;Ja

6 P.

+7 = -30, V7 = 190, ~ =1.743, : =
Y

0.190;
o

0 !43 P8
+8 = -3 , V8 =13°, ~ =1.538, g = 0~257

A drawing machine is desirable for plotting the Mach
close any newly calculated field.

waves which

With a finer subdivision of the angular variations, a greater
accuracy seems attainable by means of this method than with the aid
of the Prendtl-Busemennmethod described below.

4. P2#UWlZ-BUSEMANN METHOD:

For approximated construction of two-dimensional potential flows
mostly the Prandtl-BuEemeM method is used, the main e~dient of which
is a diagram with the characteristic hodograph curves (14) ~d (15),
respectively.

The ~endtl -Busemamn method is, according to our terminolo~
introduced in chapter II, (NACA TM 1242), a field method, that is, a
pair of vslues q, O is coordinated to each field formed by the
characteristic base curves or Mach waves. For the sake of a simple
representation of the method we assume this-~air of values q, ~ to
be valid precisely for the field center, the definition of which was
given in chapter II, paragraph 7, NACA TM 1242.1 We now visualize the
field centers as connected with each other: these connect- curves

1 The field centers are very useful for explanation of the method;
they me, however, in case of two-dhensionel potential flows, in contrast.
to rotationally-symmetrical ones, not reqtied for the construction so
that the exact definiticm of th~ field centers would here not yet be

. necessery.
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give, as was shown, again cheraoteristicbase curves, thus here the
Mach waves. To these Mach waves, not perhaps to the Mach waves of the
field boundaries, the characteristichodograph curves were coordinated.

The net of the chemcteristic holographs mey be drawn once and for
all according to the expositions in section 2 for a given K. According
to former representations the ‘crossingof a left-hand Mach wave in the
flow plane is connected with a progressing &Long a right-hand charac-
teristic hodograph in the velocity plane. “Correspondingly, crossing of
a right-hand Mach wave is coupled with ~ogressing along a left-hand
characteristichodograph. Busemann and Preiewerk gave a net of charac-
teristic holographs for ~ = 1.405. This diagram is custmerily denoted
simply as ‘Characteristicsdiagramrl.

8

In order to calculate from the known

I pairs of Values q, # in field I and.II

u the unknown pair of values q, 3 in the
field III ad~oining downstream, one ~o-

.27 gresses from the point in the character-
istics diagram corresponding to field I
elong a right-hand epicycloid, since one
has crossed a left-hand Mach wave in the
transition from’I to III; correspondingly

one progresses &cm the point of the characteristics &kgram corres-
ponding to field 11 along a left-hand epicycloid. The point of
intersection gives the pair of values q, ~ for the field 111. The
field that had been open so far is then closed by two Mach waves the
direction of which is determined from the values of q and % found
~ust now. The modifications of the method fa” fields at the boundary
of the region are obvious.

In order to facilitate the reading of t@ q- and ~-values from
the characteristics dfagrem, one may take the net of the characteristic
holographs as net of coordinates. According to (14) end (16), respec-
tively, one has for the left-hand epicyclolds:

‘8- I.(q)=oz (20)

according to (15) and (17), respectively, for the right-hand epicycloid

-19- V(q) = “19r (21)

Thus *and- through the tabulated function v(q) - q as well may be
very easily expressed by’the perimeters 41 and flr of the epicycloid.

.

●

✎ ✎

.

●
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Ihstead of the parameters az and $r which probably first seemed

obvious, Busemann selected others with only the stsrting points of the
count shifted frcau ~ and v. The angles # and v sre measured
in degrees. The degree sign (0) is omitted beluw. One may then express
Busemann’s epicycloid numbering so that as equation of the left-hand
epicycloid

a - v(q) = 2(h - 400)

as equation of the right-hand epicycloid

is written with the

Thus the difference

-8 - v(q) = 2(p - 600)

new parameters A and p.

200-4 =P-X

1000-v(q) =v+~

(22)

(23)

Hence there results

(24)

(25)

of the new peram.eters’X ~d. P gives the angle ti
except for an insignlfic@ shi~ing of the Initial point and rev&sal.
of the sense in which one is counting. The center line of Busemsmn’s
characteristics diagram ($ = O) obtains the lldirectionnuniber11
P - h equsl to 200, whereas the sum of A and. v yields the function
v(q) and therewith also q and the pressure p. The numbering of the
epicycloid according to (22) and (23) is carried out very easily if
one considers additionally that

\

v(q) just vanishes for q = a*
critical velocity). Busemann writes the parameters X and w as
1field numbersllinto the fields of the flow plane; a table for the
connection of the llpressurenumber’[ w+h with q and p mustbe
given as supplement.

If one approximates the ihltial and boundary conditions in such a
manner that one replaces the prescribed angles by sectionally constant
distributions with jumps of ~l” or ~2°, one msy assure by a suitably
fine-meshed characteristics diagrem that one gets by without interpola-
tion. The customary characteristics diagrsms are in theti main part
arranged for angular jumps of 10.
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Additionally developed graphical expedients for facilitated
plotting of the Mach waves will not be discussed, since one can dispense
with them when a dremdng machine is used.

We will be content with these observations regerding the Prandtl-
Busemann method and will.omit the cerrying out of a standard exsmple
since the method has been represented in detail by Heybey (HWP - Archiv
Nr. 66/31 and 66/32).

5. IEZNZLOPMENTOF THE PRESSURE VARIATION

F~ SMALL lXFUECTION ANGLES.

In a fluw unilaterally bounded by a wall the flow variations en-
forced by the boundsry conditions are yopagated fram the wall along
~ family of Mach waves; in the figure it is the left-hand fsmily.

.’

.

This property of two-Mmensionel potentfel flows follows immediately
from the characteristic differential equations (13) which connect
velocity and directional variation. This property is by no meens
transferable to other than two-dimensional.potentisl flows, for instence
potenthl flows with rotational symmetry.

Since for the conditions assumed in the figure the flow variations
occur at the crossing of left-hemd Mach waves, they may le calculated
by ~ogresslng along a right-hand characteristic, thus according to
(13b) from

“=-+d’ (13b)

A develo~ent of,~the~essure difference for deflection of the
flow fiomthe angle = O tom-theengle ~ = 5 is to be given; the
deflection angle 5 is to be amsll and the third powers of 8 ere
still to be inclu~d in the develo~ent. Busaenn has for the first
time set up such a develo~nt, using a method totally different &a

.

.
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ours. In artier to develop the pressure, first the velocity ~ which

is to pertain to $ = 5 is developed according to equation (13b) with
respect to 5. For $ = 0, q is to equal ql. We’set up:

(26)

and detetine the mm coefficients cl~ q> C3 fr~ (13b) by cm- .
.

dq
perison of the coefficients. One has only to equate —=cl+2c2b+3c3b2

b d+

with the expression originating ficm -

e

when q is replaced
22-a

)bY ~ according to (26)= ~erein iS a2 = ~~ (vm2 - q2 ●
It iS ‘

most convenient to sclusrethe two sides of the relation mentioned before
compsr@g the coefficients. There results

q~l

cl=-@=’c2=-
al~l

c3=-

(
12 q.12“- al )

2 7/2

~1

4(q12 - a12)2

{

(K - 1) (2K

7

[
(K - 1)9.14

- 3)q6

+

(27)

. >

In order to”obtain frmn the development for ~ that of the pressure
~, one stsrts from the isentropic pressure equation

{HP2 1# - *2 &—=
PI vm2 ‘1-- ~12

-1 .

(28)
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This expression Is
For transformation

which-follows &am

Ixtnomiallyexpanded,
of some of the terms

the

21f %

NACA TM 12k3

makhg use of (26) and (27).
one applies the formula

7If Vmp- qf = “1,

ener~ theorem (1(6)), and

with the Mach muiber M = ‘IJal one then finally obtains

{

P2 - PI = P@ — + 52(M2 - 2)2 + J&4

@- -1 4(M2 - 1)2
L

63
+

[
(~ + 1).M8

12(M2 - 1)7/2

(29)

-)
+ (2~2 - 7~ -

lj
5)M6 + 10(~ - l)lJ4 - M2 + 8

The first term of this development my be found already in Th. Meyer ts
report; Busemann gives the development up to 53 (Volta congress, p. 337)●

It is true that the coefficient of 53 as calculated by us, completely
differs frm Busemannls. !Ihecomparison of the pressure difference
occurring for isentropic deflection with the one in case of a compres-
sion shock is made in chapter V, paragraph 7.

.

.

m transferring formula (29) to the case of the flow veriation
taking place at the crossing of riaht-hand Mach waves, one has to
establish the connection tith the characteristic differential equation
(13a). The simple rule results that one has to select the sign of b in
(29) as it correspond to a reflection on the fieestreem direction of the
conditions assumed above (cf. the figures on p. 16).
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u

.

? As application of this fohmla (29) we use the calculation of Ga
end ~ for circular segment profiles In second approximation which
was already performed by A. BuEemann.

w

●

q,

\
P.

\
Y

Accorting to th9 figure one has for
the profile bob = -S - Pob and for t’he

If one replaces cos b by 1, sln b by

with
uses
end

[

t
1

ca. — (% )- ~c)b
tPl~l*
—o
2

the upper side (index ob) of
lower side (index u) k = PO

5, one has

al

t

CW=AJ( )X@- pob~- po#ob ‘z
Plql* .

t—
2°

the inte ation to be extended over’the entire wing chord. If one
Tformula 29) to the second term in 5 for the expression of pu

Po~: .

●

u
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‘P1’112

[ 1+#(M’- 2)2+of’
P- a

‘Tel 4P-1)2

for which one writes abbreviatedly:

(M2-+2+ ~M4
cl=&l’c2= 4(M2-1)2

one obtains
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Jo

f

t
Therein it is already taken into account that PoD al mnishes

o

(for the eqression for & we shall also use the vanishing of

J

t
P~b3 dz for circulsr segment profiles). In the foregoq deriVa-

0

tion Ca is then determined to include terms which sre quadratic in the

angles B and Bob. Far ~ one obtains analogously the expression

incluting terms of the third order in the angles F and Pob:

c

.

.

*
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Since one has for a~pr~tlon of the circulsr arc by a parabolic arc

one obtains

Therewith becmes

It is noteworthy that for the
the circulsr se@uent profiles
mentally.

angle of attack F = O a negative lift of
exists which was also determined experi-
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TfAmE

RELATION BETWEEN DE3ZECTION, PRESSURE, KELOCITY, MACH NUMBER AND

.

MACH ANGLE I’GRIEIINTROl?ICCHANGES OF STATE ACC@DING TO

PRAND2L-MEYER FOR AIR (~ = 1.405).

IJ

00

1
2

;
5
6

i
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

—

0.527
.478
● 449
.424
● 402
.382
.363
.346
.329
;$;

.284

.27o

.257

.244

.232

.221

.210
●200
●190
●180
.170
.161 I
● 153
● 145
.137 ~
● 130
.123
.116
.109
.103

1 ● 000
1.067
1.106
1 ●140
1.170
1.199
1.225
1.250
1.275
1.299
1.322
1 ● 345
1.367
1.388
I..408
1.428
19447
1.466
1.485
1 ● 504
I.522
1.540
1“557
1 ● 375
1 ● 592
1.609
l.e~
1.642
1.658
1.674
1.689

9
a I

1 ● 000
1.081
1.132
1.177
1.217
19256
1.293
1.330
1.366
1 ● 401
1.4z6
1.470
1.504
I.. 538
1.572
1.606
1.640
1.674
1.708
1.743
1.778
1.812
1.848
1.883
1.918
1.9%
1 ● 990
2.027
2.083
2.100
2.138

90000”t

6745
6205
5810
5520
p 50
w 40

E :;
4535
4410
42 50
41 40
40 30
39930
3830
3735
3640
3> n
3500
3415
33 30
32 45
3205
3125
30 50
3010
29 35
29 00
28 25
27 55
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RELATION BETWEEN

23

*

IIEIZECTION,PRESSURE, VXLOCITY, MACH NUMBER AND

MACH ANGLE FCIRISENIROPIC CHANGES OF STATE ACCCRDDC TO

PRANDI’L-MEYERFOR AIR (~ = 1.405). - Continued.

v & L *
PO

a=a* arc sin s
9.

3° 0.097 1.704 2 ● 177 27020’
32 .091 1.720 2.215 26 50
33 ● 086 1.735 2.255 2620
34 .080 1 ● 750 2.295 25 x

.076 1.765 2.335 2520
:2 ● Op 1.780 2.376 24 55
37 .067 ‘ 1.794 2.418 2425
38 .062 1.808 2.46o 24 00

.058 1.822 2.502 23 35
:: .055 .836 2.25 23 10
41 .051 1.850 2 ● 590 22 45
42 ● 047 1.864 2.635 22 20
43 .044 1.877 2.661. 21 55
44 ● 041 1.890 2.728 21 30
45 .038 1.903 2.778 21 10

● 035 1.915 2.823 20 45
;; ● 033 1.928 2.872 20 20

.o~o 1 ● 940 2.922 20 00
49 .028 I*9P 2.974 19 40
50 .026 1.984 3.027 19 20
51 .024 .976 . .081 18 55
52 .023 1.988 3.136 18.35

.021 1 ● 999 3.191 18.15
z .019 2.o1.1 3.247 17.53
55 .018 2.022 3.304 17 35
56 .016 2.033 3.363 1720
57 .015 2.044 3.424 17 00
58 . .013 2 ● 055 3.487 1640
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